Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B.
نویسندگان
چکیده
Clostridium difficile is a leading cause of nosocomial infection in the developed world. Two toxins, A and B, produced by most strains of C. difficile are implicated as virulence factors, yet only recently has the requirement of these for infection been investigated by genetic manipulation. Current vaccine strategies are focused mostly on parenteral delivery of toxoids. In this work, we have used bacterial spores (Bacillus subtilis) as a delivery vehicle to evaluate the carboxy-terminal repeat domains of toxins A and B as protective antigens. Our findings are important and show that oral immunization of the repeat domain of toxin A is sufficient to confer protection in a hamster model of infection designed to closely mimic the human course of infection. Importantly, neutralizing antibodies to the toxin A repeat domain were shown to be cross-reactive with the analogous domain of toxin B and, being of high avidity, provided protection against challenge with a C. difficile strain producing toxins A and B (A(+)B(+)). Thus, although many strains produce both toxins, antibodies to only toxin A can mediate protection. Animals vaccinated with recombinant spores were fully able to survive reinfection, a property that is particularly important for a disease with which patients are prone to relapse. We show that mucosal immunization, not parenteral delivery, is required to generate secretory IgA and that production of these neutralizing polymeric antibodies correlates with protection. This work demonstrates that an effective vaccine against C. difficile can be designed around two attributes, mucosal delivery and the repeat domain of toxin A.
منابع مشابه
Erratum for Hong et al., "Mucosal Antibodies to the C Terminus of Toxin A Prevent Colonization of Clostridium difficile".
Mucosal immunity is considered important for protection against Clostridium difficile infection (CDI). We show that in hamsters immunized with Bacillus subtilis spores expressing a carboxy-terminal segment (TcdA26-39) of C. difficile toxin A, no colonization occurs in protected animals when challenged with C. difficile strain 630. In contrast, animals immunized with toxoids showed no protection...
متن کاملTailored Cyclodextrin Pore Blocker Protects Mammalian Cells from Clostridium difficile Binary Toxin CDT
Some Clostridium difficile strains produce, in addition to toxins A and B, the binary toxin Clostridium difficile transferase (CDT), which ADP-ribosylates actin and may contribute to the hypervirulence of these strains. The separate binding and translocation component CDTb mediates transport of the enzyme component CDTa into mammalian target cells. CDTb binds to its receptor on the cell surface...
متن کاملThe effect of clostridium difficile Toxins Aand B on ligated rabbit IIeal loop and cultured cell link BK
clostridium difficile has been recognized as the major cause of pseudomembranous colitis.this bacterium produces two toxins(an enterotoxin -cytotoxin and a potent cytotoxin called toxin A and toxin B erespectively).these toxins have implicated in pathogenesis of the disease.however,histopathological effects of their molecular mass less than 100KDa have been essayed.in the persent study,we exami...
متن کاملDetection of Virulence Genes of Clostridium difficile in Children with Cancer by Multiplex PCR
Introduction: Toxigenic Clostridium difficile is the major cause of antibiotic-associated diarrhea, colitis, and pseudomembranous colitis. The pathogenicity of C. difficile is related to toxins A&B. Children with cancer are at risk of developing C. difficile infection (CDI) due to increased exposure to antibiotics, immunosuppression, and longer hospital stays. Recently, due to higher sensitivity...
متن کاملEFFECT OF AMYGDALUS COMMUNIS ON GROWTH AND TOXIN PRODUCTION OF CLOSTRIDIUM DIFFICILE
It is known that the major etiologic agent of pseudomembranous colitis in man is Clostridium difficile. With respect to traditional use of almond paste in the treatment of infantile diarrhea, we studied the effects of the aqueous extract of Amygdalus communis (AEAC) on the growth and toxin production of Clostridium difficile in culture medium and the rabbit ligated ileal loop. Three groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 79 6 شماره
صفحات -
تاریخ انتشار 2011